
N92-23371

Abstract

Knowledge-Based Approach for Generating Target System /_., /qSpecifications from a Domain Model {

Hassan Gomaa, Larry Kerschberg, and Vijayan Sugumaran

Center for Software Systems Engineering - t
Department of Information and Software Systems Engineering / _ i

George Mason University .._/ /., t \!
Fairfax, Virginia 22030-4444 (_... _s / ;

L/-
/ < t ;" _-

. 1

have to perform a full systems analysis every c

time a new target system has to be constructed.

I

Several institutions in industry and academia
are pursuing research efforts in domain
modeling to address unresolved issues in
software reuse. To demonstrate the concepts
of domain modeling and software reuse, a
prototype software engineering environment is
being developed at George Mason University
to support the creation of domain models and
the generation of target system specifications.
This prototype environment, which is applica-
tion domain independent, consists of an inte-
grated set of commercial off-the-shelf software
tools and custom-developed software tools.
This paper describes the knowledge-based tool
that has been developed as part of the environ-
ment to generate target system specifications
from a domain model.

Keywords: domain modeling, reuse, soft-
ware engineering environments, object reposi-
tory, requirements elicitation, knowledge-based

tool support.

INTRODUCTION

An application domain is defined to be a
collection of systems that share common char-
acteristics. A domain model is used to capture
common characteristics and variations among a
family of software systems in a given applica-
tion domain. From the domain model, a target
system can be generated by tailoring the
domain model according to the requirements of
the target system. Thus, a target system engi-
neer can develop the specification for a target
system in terms of the domain model specified
previously by a domain analyst, and does not

At George Mason University, a project is
underway to support software engineering life-
cycles, methods, and prototyping environments
to support software reuse at the requirements
and design phases of the software lifecycle, in
addition to the coding phase. A reuse-oriented
software lifecycle, the Evolutionary Domain
Lifecycle (Gomaa, 1989; Gomaa, 1991a) has
been proposed, which is a highly iterative life-
cycle that takes an application domain perspec-
tive allowing the development of families of
systems. A domain analysis and modeling
method has also been developed (Gomaa,
1990). This paper describes a knowledge-
based approach for generating target system
specifications from a domain model.

DOMAIN ANALYSIS AND MODELING

The Evolutionary Domain Life Cycle (EDLC)
Model (Gomaa, 1989) is a software lifecycle
model that eliminates the traditional distinction

between software development and
maintenance. Instead, systems evolve through
several iterations. Hence, systems developed
using this approach need to be capable of
adapting to changes in requirements during
each iteration. Furthermore, because new

software systems are often outgrowths of exist-
Lag ones, the EDLC model takes an application
domain perspective allowing the development
of families of systems.

Parnas referred to a collection of systems
that share common characteristics as a family of
systems (Parnas, 1979). According to Pamas,
it is worth considering a family of systems

PRECEDiiW..; PAGE BLANK NOT FILMED

when there is more to be gained by analyzing
the systems collectively rather than separately,
i.e., the systems have more features in com-
mon than features that distinguish them. The
concept of viewing an application domain as
consisting of a family of systems has been
adopted by various researchers (Batory, 1989;
Kang, 1990; Pyster, 1990; Lubars, 1989).

When considering the development of a
family of systems, it is necessary to replace the
traditional system development activities of
Requirements Analysis, Requirements
Specification, and System Design with activi-
ties that span the entire application domain.
These are Domain Analysis, Domain
Specification, and Domain Design.

A Domain Model is a problem-oriented ar-
chitecture for the application domain that re-
flects the similarities and variations of the

members of the domain (Gomaa 1992). Given
a domain model of an application domain, an
individual target system (one of the members of
the family) is created by tailoring the domain
model according to the requirements of the in-
dividual system.

A Domain Model is initially created by
means of a Domain Analysis. Domain
Analysis (Prieto-Diaz, 1987) is a requirements
analysis of a family of systems for a domain,
rather than of a given target system. A domain
analysis must address the requirements of the
family of current systems as well as anticipate
future changes. Although some future changes •
may be anticipated, it is unlikely that all future
changes can be anticipated. It is therefore nec-
essary for the Domain Model to be evolution-
ary. It needs to be capable of evolving as new
(i.e., unanticipated) requirements are added and
as existing requirements are changed in •
unanticipated ways. Domain Analysis is
comparable to a systems analysis performed on
a broader scale. It involves the analysis of
existing target systems in the application
domain as well as interviewing domain experts
and capturing their knowledge of existing
features, including known or anticipated
variations in the domain. •

Reuse is an important goal in domain
modeling. A key aspect of this work is the
way it combines generation technology with

composition technology. Reuse by generation
(Biggerstaff, 1987) implies a top-down ap-
proach in which a target system is generated
from a domain model by tailoring the domain
model according to the target system require-
ments. Reuse by composition (Biggerstaff,
1987) is a bottom-up approach in which com-
ponents residing in a reuse library are located
and reused, ideally without change. Instead of
requiring software developers to search large
reuse libraries, the domain model has an index
into the reuse library, so that reusable software
components may be more easily located and
included in the target system implementation.

Multiple Views of Domain Model

Applying the domain modeling method, the
application domain is modeled by means of the
following views:

Aggregation Hierarchy. The Aggregation
Hierarchy is used to decompose complex,
aggregate object types into less complex
object types, eventually leading to simple
object types at the leaves of the hierarchy.

Object Communication Diagrams. Objects
in the real world are modeled as concurrent

processes that communicate with each other
using messages. The object communication
diagrams, which are hierarchically struc-
tured, show how objects communicate with
each other.

State Transition Diagrams. Because each
active object is modeled as a sequential
process, it may be defined by means of a
finite state machine and documented using a
state transition diagram.

Generalization / Specialization Hierarchies.
As the requirements of a given object type
are changed to meet the needs of a given tar-
get system, the object type may be special-
ized by adding, modifying, or suppressing
operations. The variants of a domain object
type are stored in this hierarchy.

Feature / Object Dependencies. This view
shows for each feature (domain requirement)
the object types required to support the
feature.

182

Thedomain modeling method has been applied
to developing a domain model for NASA's
Payload Operations Control Center (POCC)
Domain.

PROTOTYPE SOFTWARE
ENGINEERING ENVIRONMENT

A prototype software engineering environment
is being developed, which consists of an
integrated set of software tools that support
domain modeling and the generation of target
system specifications. A schematic representa-
tion of the prototype environment is given in
Figure 1. In order to expedite development of
the prototype, the environment uses commer-
cial off-the-shelf software as well as custom

software. We are using Interactive
Development Environments' Software Through
Pictures CASE tool to represent the multiple
views of the domain model, although semanti-
cally interpreting the views according to the
domain modeling method. The information in

Multiple Views of Domain Spec

Object
Repository

the multiple views is extracted, checked for
consistency, and mapped to an underlying rep-
resentation, referred to as the domain specifica-
tion, which is stored in an object repository
(Gomaa, 1991b).

The domain specification stored in the ob-
ject repository is augmented with domain fea-
tures (requirements), inter-feature dependencies
and feature/object dependencies. Inter-feature
dependencies capture the relationships among
features. For example, a feature may require
the presence of some other feature(s). Another
example of inter-feature dependency is that
some features may be mutually exclusive or
mutually inclusive. The feature/object depen-
dencies relate features to objects, i.e., they
define the object types required to support a
particular feature. The domain analyst provides
this feature-related information using the
Feature Object Editor. Feature/object depen-
dencies are stored in the object repository.

Multiple Views of
Tarllet System Spec

1

Figure 1. Prototype Domain Modeling Environment

183

The object repository interfaces with
knowledge-basedtoolsandprovidestheinfor-
malandformal specificationsfor reuse.Thus,
the object repository provides a consistent
domainmodel specificationwhich canbeac-
cessedby varioustools.

Once domainmodeling is completed,the
domainspecificationservesasthe framework
for generatingtargetsystems.Theprocessof
generatingtargetsystemsfrom adomainmodel
canbesignificantlyimprovedwith knowledge-
basedtool support. This tool not only must
haveknowledgeaboutthe domainmodel,but
alsomustcontainproceduralknowledgeabout
constructing target systems. A knowledge-
based system called the Knowledge-Based
RequirementsElicitation Tool (KBRET) is
being developed to automatethe processof
generatingthespecificationsfor targetsystems.
KBRET is usedto assistwith targetsystemre-
quirementselicitation and generationof the
targetsystemspecification.This tool is imple-
mented in the expert systemshell CLIPS (C
LanguageIntegratedProductionSystem),de-
veloped at NASA/Johnson Space Center
(Giarratano,1991). It conductsa dialog with
thehumantargetsystemrequirementsengineer,
prompting the engineer for target system
specificinformation. Thecourseof thedialog
is determinedby theresponsesprovidedby the
targetsystemengineer.The outputof this tool
is usedto adaptthedomainmodel to generate
thetargetsystemspecification.Whenthetarget
system objects have been assembled, the
correspondingmultiple views arederivedby
tailoring the multiple views of the domain
model. Themultipleviewsof thetargetsystem
are then displayed using Software through
Pictures.

The prototypesoftwareengineeringenvi-
ronmentis adomain-independentenvironment.
Thus it may be usedto supportthe develop-
ment of a domain model for any application
domainthat hasbeenanalyzed,andto generate
targetsystemspecificationsfrom it.

KNOWLEDGE-BASED REQUIREMENTS
ELIC1TATION TOOL (KBRET)

A target system specification is derived from
the domain model by tailoring it according to
the requirements specified for the target sys-

tem. The process of generating a target system
specification consists of gathering the require-
ments in terms of domain features, retrieving
from the domain model the corresponding
components to support those features, and rea-
soning about inter-feature and feature/object
dependencies to ensure consistency. The
Knowledge-Based Requirements Elicitation
Tool (KBRET) facilitates the process of gen-
erating target system specifications from a
domain model with multiple viewpoints.

The architecture of KBRET consists of two

types of knowledge: domain-independent and
domain-dependent knowledge. The domain-
independent knowledge provides control
knowledge for the various functions supported
by KBRET. These functions include a
browser, a feature selector, a dependency
checker, and a target system generator. The
domain-dependent knowledge represents the
multiple views of an application domain model,
including the feature/object dependencies. This
knowledge is derived from the object reposi-
tory through the KBRET Object Repository
interface and structured as CLIPS facts

(Sugumaran, 1991). The various components
of KBRET are diagrammatically depicted in
Figure 2.

The separation of domain-independent and
domain-dependent knowledge is essential for
providing scale-up and maintainability of
domain specifications for large domains. Also,
since the domain-independent knowledge is
independent of the application domain, it can be
used with domain-dependent knowledge from
any application domain to generate target sys-
tem specifications in that domain.

Domain Independent Knowledge

The domain-independent knowledge sources
provide procedural and control knowledge for
the various functions supported by KBRET.
The Dialog Manager is responsible for carrying
out a meaningful dialog with the target system
engineer and eliciting the requirements for the
target system. It addresses such issues as
how, and in what sequence, the target system
engineer should be prompted for various
features, invoking and controlling the different
phases of KBRET, the user interface, etc.

184

KBRET

I I>mogMm_]

KBRET Knowledge

Domain Independent Knowledge Sources

Domm
Knowledge Sources

MultipleViews]

CLIPS
Inference

t 1KBRET-Object Repository System
lnterf_ _ Specification

ObjectRepository

Figure 2. Knowledge Based Requirements Elicitation Tool (KBRET)

Before specifying the requirements for the
target system, the target system engineer may
wish to browse through portions of the domain
model in order to gain understanding of the
application domain under consideration. The
Domain Browser knowledge source provides
this facility. It provides rules for initiating and
terminating the browsing facility and for
accessing the appropriate domain-dependent
knowledge sources.

The Feature & Object Selection�Deletion
knowledge source keeps track of the selection
or deletion of features for the target system and

the corresponding object types. This knowl-
edge source incorporates rules for selecting and
deleting features and for invoking the appro-
priate rules for checking inter-feature and
feature/object dependencies.

The Dependency Checker knowledge
source cooperates with the Feature & Object
Selection/Deletion knowledge source. When a

particular feature is selected for the target sys-
tem, the Dependency Checker enforces the
inter-feature and feature/object dependencies
for that feature. These dependencies are ob-
tained from the Inter-Feature & Feature- Object

Dependencies knowledge source, which is
domain dependent, as shown in Figure 2.
When a feature with some prerequisite features
i's selected, the Dependency Checker ensures
that those prerequisite features are included in
the target system. For example, in the POCC
domain, the Verifying Real Time Commands
feature requires the Sending Real Time
Commands feature. If the Sending Real Time
Commands feature is not selected and the

186

Verifying Real Time Commands feature is de-
sired in the target system, the Sending Real
Time Commands feature will be included in the

target system before selecting the Verifying
Real Time Commands feature.

Similarly, before deleting a feature from the
target system, dependency checking is per-
formed to ensure that it is not rexluired by any
other target system feature. Using the example
from the previous paragraph, if both Sending
Real Time Commands and Verifying Real Time
Commands features are selected for the target
system, the Sending Real Time Commands
feature cannot be deleted from the target system
as long as the Verifying Real Time Commands
feature is selected for the target system. Thus,
the Dependency Checker knowledge source has
rules to enforce the inter-feature and

feature/object dependencies so that a consistent
target system is specified.

Once the feature selection for the target
system is complete, the Target System
Generator knowledge source begins the pro-
cess of assembling the target system. The
domain kernel object types are automatically
included in the target system. Depending upon
the features selected for the target system, the
corresponding variant and optional object types
are included according to the feature/object de-
pendencies. The Target System Generator
would detect if more than one variant

(specialization) of a particular kernel or optional
object type were included in the target system.
These multiple variant object types have to be
"integrated" to produce one integrated variant
object type that would support the desired fea-
tures in the target system. Some domains may
require the presence of multiple variants of
certain objects, and those variant objects should
not be integrated. For example, in the POCC
domain, multiple variants of observatory-re-
lated objects should not be integrated.

If multiple specializations of a particular
kernel or optional object have been selected,
and if they have to be integrated, the Target
System Generator will access the Multiple
Views domain-dependent knowledge source
and check the appropriate generaliza-
tion/specialization hierarchy to see if an inte-
grated object type for those variant object types
exists as a result of previous variant integration

processes. If such an integrated object type is
present, then that object type is included in the
target system in lieu of those variant object
types to be integrated. Once all the required
integrated variant object types have been in-
eluded, the target system generation is com-
plete.

If an integrated variant object type is not in
the domain model, the target system generation
process is suspended until the domain analyst
can specify the integrated variant and include it
in the domain model. At that time the target
system generation process can be reactivated to
complete the specification of the target system.

Variant integration is a non-trivial task and
may require considerable domain knowledge.
Hence, completely automating the variant inte-
gration process will be a tremendous challenge.

Domain Dependent Knowledge

The domain-dependent knowledge sources
contain specific information about a particular
application domain. They are used by the do-
main-independent knowledge sources of
KBRET in eliciting the requirements and gen-
erating the target system specification. The
domain-dependent knowledge sources are
derived from the domain specification, which is
persistently stored in the object repository. The
KBRET Object Repository Interface accesses
the object repository and creates these knowl-
edge sources using a representation that is
compatible with the other knowledge sources
of KBRET.

The Features and Object Types knowledge
source contains a list of all the object types and
features that have been incorporated in the
domain model. For each object type, its name
and properties are stored in this knowledge
source. The properties of objects are: kernel,
optional, variant, aggregate, agh_root, and
gsh_root. The CLIPS implementation of this
knowledge source is essentially a list of facts
-- one fact for each object type and its proper-
ties and one fact for each feature.

The various relationships and dependencies
among features and between features and object
types are captured in the Inter-Feature &
Feature-Object Dependencies knowledge

186

source. The prerequisite relationship between
two features is captured in a CLIPS fact with
the key word "requires". For each feature, the
object types required to support that feature are
expressed as CLIPS facts using the key word
"supported-by". These dependencies are en-
forced during feature selection or deletion by
the Dependency Checker knowledge source.

The Multiple Views knowledge source
contains the different views created using the

EDLC methodology, in particular, the aggrega-
tion hierarchy and the generalization/special-
ization hierarchies. These hierarchies are ac-

cessed and utilized by the Target System
Generator knowledge source when the target
system is being assembled. The parent-child
relationship between objects in the aggregation
hierarchy is expressed as CLIPS facts using the
key word "is-part-of'. The supertype-subtype
relation between objects in the generaliza-
tion/specialization hierarchy is expressed as
CLIPS facts with the "is-a" key word.

GENERATION OF TARGET SYSTEM

SPECIFICATION

To generate the target system specification,
KBRET enters into a dialog with the target

system engineer and elicits the requirements for
the target system. A sample dialog, in which a
domain model for the Payload Operations
Control Center (POCC) application domain is
used to generate a target system specification,
is given in the Appendix.

At the start of the dialog, KBRET prints the
system banner and asks the target system engi-
neer whether he/she wishes to browse the
domain model or would like to specify the re-
quirements for the target system, as shown in
the sample dialog in the Appendix. If the re-
sponse is to browse, the browsing phase is ini-
tiated. The target system engineer can explore
the domain model and get explanations for the
different features incorporated in the domain
model. Once sufficient familiarity with the

domain model has been gained, the target
system requirements specification phase may
be initiated.

The target system engineer is presented
with the various features captured in the
domain model in the form of a menu, as shown

in the Appendix, and the features desired in the
target system can be selected from this menu.
Whenever a feature is selected for the target
system, the dependency checking phase is ini-
tiated, and the inter-feature and feature/object
dependencies are checked and enforced. If a
particular feature, say "F", requires the pres-
ence of other features, and they are not selected
for the target system, the target system engineer
is informed of that fact, and those features are

automatically included in the target system in
order to support feature "F".

An example of this feature dependency
checking is shown in the sample dialog in the
Appendix. When the target system engineer
tries to select the Verifying Real Time
Commands (feature 7), KBRET responds with
a message saying that Verifying Real Time
Commands requires Sending Real Time
Commands feature and it will be automatically
included in the target system, and requests the
target system engineer's confirmation. When
the target system engineer types "y" to confirm
the selection, KBRET includes both the

Sending Real Time Commands feature and the
Verifying Real Time Commands feature in the
target system and displays a message to that ef-
fect, as shown in the Appendix.

When a feature is selected for the target
system, the object types that are required to
support that feature are also selected in accor-
dance with the feature/object dependencies and
the CLIPS fact-base is updated to reflect that
fact. The target system engineer, thus, can
specify the requirements for the target system,
and the Feature & Object Selection�Deletion
knowledge source asserts new facts into the
fact-base to record those selections. Of course,

the Dependency Checker would ensure that the
inter-feature and feature/object dependencies
have not been violated.

The target system engineer can also delete
features that have been selected for the target

system. If a feature, say "F", is to be deleted,
the Dependency Checker will check the fact-
base to see if any of the features selected for the
target system require that feature "F". If so,
the deletion of feature "F" is disabled. An ex-
ample of this deletion dependency checking is
shown in the sample dialog. When the target
system engineer tries to delete the Sending Real

187

Time Commands (feature 6) from the target
system, KBRET responds with a message
saying that the Sending Real Time Commands
feature is required by the Verifying Real Time
Commands feature and since Verifying Real
Time Commands feature is currently selected
for the target system, the Sending Real Time
Commands feature cannot be deleted, and the

dialog continues. When a feature "F" is
deleted, it may cause the deletion of some other
features if those features were included in the

target system solely because of the selection of
feature "F" and if they are not required by any
other feature selected for the target system.
The deletion of a feature also triggers the dele-
tion of object types that were included to sup-
port that feature.

If the target system engineer would like to
specify a feature that has not been captured in
the domain model, the requirements elicitation
phase is suspended and the domain analyst is
called upon to model that requirement and en-
hance the domain model. Then, the target sys-
tem specification and generation may be re-
sumed.

Once the requirements for the target system
have been completely specified, the target sys-
tem generation phase is invoked. KBRET
prompts for a name for the target system that is
being generated so that it may be stored in the
object repository for reuse. The fact-base is
examined and the features and the object types
selected for the target system are gathered.
KBRET then presents the list of features that
have been selected for the target system. The
kernel object types are included in the target
system because they must be part of every
member of the family of systems. The selected
variant and optional object types are examined
to see if variant integration is required. If vari-
ant integration is not required, then the target
system specification is generated and presented
to the target system engineer.

In presenting the target system specifica-
tion, KBRET provides two options. The target
system engineer may view only the leaf-level
object types or he/she can view both the aggre-
gate and leaf-level object types. If the target
system engineer chooses the second option,
KBRET provides the aggregation hierarchy for
the target system, as shown in the Appendix.

This is accomplished by pruning the domain
aggregation hierarchy, i.e., deleting from the
domain aggregation hierarchy the object types
that have not been included in the target sys-
tem. KBRET presents the target system aggre-
gation hierarchy in an indented form, as shown
in the Appendix, to reflect the various levels of
the aggregation hierarchy.

KBRET also outputs two files containing
the target system information. These files are
used to tailor the domain model graphical views
and generate a set of graphical views for the
target system. The target system views differ
from those of the domain model in two ways.
First, the optional objects that are not selected

for the target system are removed. Secondly,
in the case where one or more variants of a

domain object type are selected, the object type
is replaced by its variant(s).

If variant integration is required, the
domain analyst is called upon to perform vari-
ant integration. When the integration process is
completed, the target system generation phase
is resumed and the target system specification
is generated and presented to the target system
engineer.

SUMMARY

This paper has discussed the domain modeling
approach to software reuse and presented a
prototype environment that supports domain
modeling and generation of target system
specifications. The architecture of the

knowledge-based tool, KBRET, along with its
domain-dependent and domain-independent
knowledge sources was described. Finally, the
paper has discussed KBRET's approach to
generating target system specifications from the
domain model, by eliciting the requirements for
the target system and tailoring the domain
model. A sample dialog with KBRET was also
presented.

Future work includes extending KBRET to
provide the capability to generate target system
specifications from existing related target
system specifications in conjunction with the
domain model, and also to improve KBRET's
user interface.

188

ACKNOWLEDGEMENTS

We gratefully acknowledge the assistance
of S. Bailin, R. Dutilly, J. M. Moore, and W.
Truszkowski in providing us with information
on the POCC. We gratefully acknowledge the
major contributions of Liz O'Hara-Schettino in
developing the domain model of the POCC,
and C. Bosch and I. Tavakoli for their major
contributions to the prototype software engi-
neering environment. This work was spon-
sored primarily by NASA Goddard Space
Flight Center Automated Technology Branch
Code 522.3 under the Code R research

program, with support from the Virginia Center
of Innovative Technology. The Software
Through Pictures CASE tool was donated to
GMU by Interactive Development
Environments ODE).

REFERENCES

Batory, D. (1989). The Genesis Database
System Compiler: A Result of Domain
Modeling. Proc. Workshop on Domain
Modeling for Software Eng., OOPSLA'89,
New Orleans, LA.

Biggerstaff, T., Richter, C. (1987).
Reusability Framework, Assessment, and
Directions. IEEE Software, March 1987.

Giarratano, J.C. (1991). Clips User's Guide,
Version 5.0, Software Technology Branch,
Lyndon B. Johnson Space Center, Houston,
TX.

Gomaa, H. (1990). A Domain Analysis and

Specification Method for Software Reuse.
Proc. Third Annual Workshop on Methods
and Tools for Reuse, Syracuse, NY.

Gomaa, H. (1992). An Object-Oriented
Domain Analysis and Modeling Method for
Software Reuse. Proc. Hawaii International

Conference on System Sciences, Hawaii.

Gomaa, H., & Kerschberg, L. (1991a). An
Evolutionary Domain Life Cycle Model for
Domain Modeling and Target System
Generation. Proc. Workshop on Domain
Modeling for Software Engineering, Int.
Conf. on Software Engineering, Austin, TX.

Gomaa, H., Fairley, R., and Kerschberg, L.
(1989). Towards an Evolutionary Domain
Life Cycle Model. Proc. Workshop on
Domain Modeling for Software Eng.,
OOPSLA, New Orleans, LA.

Gomaa, H., Kerschberg, L., Bosch, C.,
Sugumaran, V., and Tavakoli, I. (1991b). A
Prototype Software Engineering Environment
for Domain Modeling and Reuse. Proc.
Fourth Annual Workshop on Methods and
Tools for Reuse. Herndon, VA.

Kang, K. C. et. al. (1990). Feature-Oriented
Domain Analysis. Technical Report No.
CMU/SEI-90-TR-21, Software Engineering
Institute.

Lubars, M. D. (1989). Domain Analysis for
Multiple Target Systems. Proc. Workshop on
Domain Modeling for Software Eng.,
OOPSLA'89, New Orleans, LA.

Parnas, D. (1979). Designing Software for
Ease of Extension and Contraction. IEEE
Transactions on Software Eng., Vol. 5 No.

2, pp. 128-137.

Prieto-Diaz, R. (1987). Domain Analysis for
Reusability. Proc. of COMPSAC'87.

Pyster, A. (1990). The Synthesis Process for
Software Development. In R. Thayer and M.
Dorfman (Eds.). System and Software
Requirements Engineering, New York:IEEE
Computer Society Press.

Sugumaran, V., Gomaa, H., and Kerschberg,
L. (1991). Generating Target System
Specifications from a Domain Model Using
CLIPS. Proc. of Second Annual Clips
Conference, Houston, TX.

Appendix. Sample Dialog with KBRET for the POCC domain.

* KNOWLEDGE BASED REQUIREMENTS ELICITATION TOOL *
* (KBRET) *

Requirements Elicitafion for POL_ domain

You may browse the features incorporated in the Domain Model, specify the requirements for the
Target System or quit KBRET.

Choices Perform

1 Browse the Domain Model

2 Specify requirements for Target System
3 Quit KBRET

Please type your choice and hit return: 1

Domain Model Browsing Phase

Please select one of the following choices to continue.
Choices Perform

1 Explore the Features
2 Exit Browsing Phase
3 Quit KBRET

Please type your selection and hit return: 1

Feature Exploration

For the description of a feature, please type its number.
Choices Feature to be described

1 Mission Type One

2 Mission Type Two
3 Experiment Type One
4 Experiment Type Two
5 Data Collection of Simulated Telemetry
6 Sending Real Time Commands
7 Verifying Real Time Commands
e Exit Browsing Phase

Please type your selection and hit return: 5

Data Collection of Simulated Telemetry:

Simulated Telemetry Data can be collected and analyzed.

Choices

1
2
3
4
5

6
7

Feature to be described

Mission Type One
Mission Type Two
Experiment Type One
Experiment Type Two
Data Collection of Simulated Telemea'y

Sending Real Time Commands
Verifying Real Time Commands

190

e ExitBrowsingPhase
Pleasetype your selection and hit return: e

Exiting the Browsing Phase

You may browse the features incorporated in the Domain Model, or specify the requirements for the
Target System or quit KBRET.

Choices Perform

1 Browse the Domain Model

2 Specify requirements for Target System
3 Quit KBRET

Please type your choice and hit return: 2

Target System Requirements Elicitation Phase

Now, you will be presented with the features incorporated in the Domain Model. If a feature is desired in the
target system, please type its number and hit return. Please select one of the following choices to continue.

Choices Feature to be selected

1 Mission Type One
2 Mission Type Two
3 Experiment Type One
4 Experiment Type Two
5 Data Collection of Simulated Telemetry
6 Sending Real Time Commands
7 Verifying Real Time Commands
e End selecting feamu_

Please type your selection and hit return: 2
The Mission Type Two Feature has been selected for the Target System.

Please select one of the following choices to continue.
Choices Feature to be selected

3 Experiment Type One
4 Experiment Type Two
5 Data Collection of Simulated Telemetry

6 Sending Real Time Commands
7 Verifying Real Time Commands
e End selecting features

Please type your selection and hit return: 3
The Experiment Type One Feature has been selected for the Target System.

Please select one of the following choices to continue.
Choices Feature to be selected

4 Experiment Type Two
5 Data Collection of Simulated Telemetry
6 Sending Real Time Commands
7 Verifying Real Time Commands
e End selecting features

Please type your selection and hit return: 4
The Experiment Type Two Feature has been selected for the Target System.

191

Please select one of the following choices to continue.
Choices Feature to he selected

5 Data Collection of Simulated Telemetry
6 Sending Real Time Commands
7 Verifying Real Time Commands
e End selecting features

Please type your selection and hit return: 7
The Verifying Real Time Commands Feature requires Sending Real Time Commands Feature.
The Sending Real Time Commands Feature will be automatically included if the Verifying Real
Time Commands Feature is desired.

Please type 'y' to include or 'n' to not include the Sending Real Time Commands Feature. (y/n): y
The Sending Real Time Commands Feature has been selected for the Target System.
The Verifying Real Time Commands Feature has been selected for the Target System.

Please select one of the following choices to continue.
Choices Feature to he selected

5 Data Collection of Simulated Telemetry
e End selecting features

Please type your selection and hit return: e

Target System feature selection has been exited...

The following features are currently selected:

Number

2
3
4
6
7

Feature Name

Mission Type Two
Experiment Type One
Experiment Type Two
Sending Real Time Commands
Verifying Real Time Commands

Please select one of the following choices to continue.
Choices Perform

1 Select more features for Target System
2 Delete a feature from Target System
3 Specify features not in the Domain Model
4 Initiate Target System Generation Phase
5 Quit KBRET

Please type your selection and hit return: 2

Please select one of the following choices to continue.
Choices Feature to be deleted

2 Mission Type Two
3 Experiment Type One
4 Experiment Type Two
6 Sending Real Time Commands
7 Verifying Real Time Commands
e End deleting features

Please type your selection and hit return: 6

Since the Sending Real Time Commands Feature is required by the Verifying Real Time Commands
Feature and since the Verifying Real Time Commands Feature is currently desired in the Target System, the
Sending Real Time Commands Feature may not be deleted now.

Pleasetype(c)and hitreturntocontinue:c

Please select one of the following choices to continue.
Choices Feature to be deleted

2 Mission Type Two
3 ExperimentType One

4 ExperimentType Two

6 Sending RealTime Commands
7 Verifying Real Time Commands
e End deleting features

Please type your selection and hit return: 3
Since Experiment Type One Feature is not required by any other target system feature, it will be deleted
from the Target System Features.

Please type 'y' to delete or 'n' to abort the deletion of Experiment Type One Feature (y/n) : y
The Experiment Type One Feature has been deleted from the Target System.

Please select one of the following choices to continue.
Choices Feature to be deleted

2 Mission Type Two
4 Experiment Type Two
6 Sending Real Time Commands
7 Verifying Real Time Commands
e End deleting features

Please type your selection and hit return: e

Target System feature deletion has been exited...

The following featmes are currently selected:

Number

2
4
6
7

Feature Name

Mission Type Two
Experiment Type Two
Sending Real Time Commands
Verifying Real Time Commands

Please select one of the following choices to continue.
Choices Perform

1 Select more features for Target System
2 Delete a feature from Target System
3 Specify features not in the Domain Model
4 Initiate Target System Generation Phase
5 Quit KBRET

Please type your selection and hit return: 4
Invoking the Target System Generation Phase

Target System Generation Phase:

Please input a name for the Target System: EXAMPLE

EXAMPLE Target Sys_m Componen_

The following features have been selected for the EXAMPLE Targ_ Sys_m

Mission Type Two Feature

193

Experiment Type Two Feature
Sending Real Time Commands Feautre
Verifying Real Time Commands Feature

Assembling the EXAMPLE Target System. Please Wait

The Target System Object Types have been assembled. To view those object types included in the Target
System, Please select one of the following choices:

Choices Perform

1 View Leaf Level Object Types
2 View Aggregate and Leaf Level Object Types

Please type your selection and hit return: 2

The Aggregate and Leaf Level Objects of the Target System:

Payload Operations Control Center Domain (kernel aggregate)
Telemetry (kernel aggregate)

Telemetry Pre-Processor (kernel)
Spacecraft Telemetry Processor (kernel aggregate)

Mission Two SC Eng. Telemetry Analog Limits Checker With Eqn. Processing (variant)
Mission Two SC Engineering Telemetry Trend Analyzer (variant)
Mission Two SC Engineering Telemetry Equation Processor (variant)
Mission Two Discrete SC Engineering Telemetry Analyzer (variant)
Mission Two FDF Interface (variant)

Observatory Telemetry Processor (kernel aggregate)
Experiment Two Instrument Telemetry Analog Limits Checker (variant)
Experiment Two Instrument Telemelry Trend Analyzer (variant)
Experiment Two Discrete Instrument Telemetry Analyzer (variant)
Experiment Two Scientific Telemetry Analyzer (variant)

TAC Interface (kernel)
RUPS Interface (kernel)

Command (kernel aggregate)
Command Load Precessor (kexnel aggregate)

Satellite Bound Command Load Processor (kernel)
Earth Bound Command Load Verifier (kernel)
Command Load Data Store (kernel)

OBC Image Verifier (kernel)
CMS Interface (kernel)

Real Time Command Processor (optional aggregate)
Satellite Bound Real-Time Command Processor (optional)
Earth Bound Real-Time Command Verifier (optional)

Real-Time Command Data Store (optional)
Satellite Bound Command Problem Re,solver (optional)

Flight Operations Analyst (kernel aggregate)
FOA STOL Interface (kernel)
POCC Mode Selector (kernel)
FOA Command Processor (kernel)
bOA NCC Processor (kernel)

FOA Telemetry Process_ (kernel)
NCC Interface (kernel)

History (kernel aggregate)
Telemetry History (kernel)
Command History (kerneD

Flight Operations Analyst History (kernel)
Telemetry Block History (kernel)

The EXAMPLE Target System Generation is complete. The object types shown above have been included in it

and no variant integration is required.

194

